Chúng tôi cung cấp cho bạn các dịch vụ chất lượng cao, đặc biệt để đáp ứng mọi nhu cầu của bạn, giúp tối ưu hóa hiệu quả công việc và mang lại giá trị lâu dài.
Mục tiêu: Đánh giá tình trạng hoạt động của máy phát hiện khí trước khi thực hiện hiệu chuẩn hoặc sửa chữa.
🔹 Kiểm tra tổng thể thiết bị, bao gồm cảm biến, nguồn điện, vỏ máy, màn hình hiển thị.
🔹 Đánh giá độ nhạy và phản ứng của cảm biến với các loại khí mục tiêu.
🔹 Kiểm tra phần mềm và hiệu suất kết nối (nếu có).
🔹 Ghi nhận các lỗi hoặc dấu hiệu hư hỏng cần khắc phục.
Mục tiêu: Đảm bảo máy đo khí hoạt động chính xác theo tiêu chuẩn nhà sản xuất và yêu cầu an toàn.
🔹 Hiệu chuẩn bằng khí chuẩn theo quy trình của Industrial Scientific.
🔹 Điều chỉnh thiết bị để đảm bảo sai số đo trong giới hạn cho phép.
🔹 Kiểm tra lại độ phản hồi của cảm biến sau hiệu chuẩn.
🔹 Cấp chứng nhận hiệu chuẩn (Calibration Certificate) nếu thiết bị đạt tiêu chuẩn.
📌 Tần suất khuyến nghị: Máy phát hiện khí cần được hiệu chuẩn định kỳ theo khuyến nghị của nhà sản xuất hoặc theo yêu cầu của khách hàng (nhưng không được quá 12 tháng).
Mục tiêu: Khắc phục lỗi kỹ thuật, đảm bảo thiết bị hoạt động ổn định và an toàn.
🔹 Kiểm tra, vệ sinh hoặc thay thế cảm biến khí nếu phát hiện hỏng hóc.
🔹 Thay thế pin, bộ nguồn hoặc màn hình nếu cần thiết.
🔹 Kiểm tra và cập nhật phần mềm (nếu có).
🔹 Kiểm tra các phụ kiện đi kèm như bơm lấy mẫu, bộ lọc khí, ống dẫn khí.
📌 Ghi chú: Toàn bộ linh kiện và phụ kiện sử dụng trong quá trình cung cấp dịch vụ đều được nhập khẩu chính hãng từ Industrial Scientific, đảm bảo chất lượng và độ tin cậy tuyệt đối.
Mục tiêu: Đào tạo người dùng cách sử dụng, kiểm tra và bảo trì máy phát hiện khí đúng cách.
🔹 Hướng dẫn vận hành thiết bị, bao gồm cách bật/tắt, kiểm tra pin và đọc kết quả đo.
🔹 Đào tạo về cách thực hiện kiểm tra nhanh (bump test) trước khi sử dụng.
🔹 Hướng dẫn bảo trì cơ bản, vệ sinh máy, bảo quản thiết bị.
🔹 Cung cấp tài liệu kỹ thuật, hướng dẫn xử lý sự cố thường gặp.
📌 Dành cho: Nhân viên vận hành, quản lý an toàn, kỹ thuật viên bảo trì tại doanh nghiệp.
Được Industrial Scientific công nhận, tuân thủ quy trình kiểm tra & hiệu chuẩn theo tiêu chuẩn.
Đội ngũ chuyên gia được huấn luyện và cấp chứng chỉ định kỳ bởi các chuyên gia trong ngành
Hệ thống cơ sở vật chất tiên tiến, đáp ứng mọi nhu cầu thực hiện dịch vụ
Quy trình kiểm tra, hiệu chuẩn và sửa chữa minh bạch, giúp khách hàng yên tâm tuyệt đối
Hỗ trợ kiểm tra và hiệu chuẩn nhanh chóng, linh hoạt theo lịch hẹn.
Tư vấn, sẵn sàng hỗ trợ mọi thắc mắc về thiết bị phát hiện khí. Hệ thống lưu trữ lịch sử kiểm tra, giúp khách hàng dễ dàng theo dõi thời gian bảo trì tiếp theo.
To ensure your gas detector can accurately detect gas levels, you must first calibrate it. Calibrating a gas detector means exposing it to a known calibration gas concentration or test gas for a specific amount of time. This reading becomes the gas detector’s reference point for future readings. Repeat this process each month to ensure accurate readings. Remember, you need to calibrate your gas detector regularly because sensors can drift over time, and poisons and inhibitors can affect gas readings.
You can calibrate your gas detector manually with calibration gas and some tubing, or you can use a docking station to automatically calibrate your monitor on a set schedule. Calibrating your gas detector with a docking station also allows you to access past calibration records and generate calibration certificates for compliance purposes.
Using incorrect or expired calibration gas can lead to an improper calibration, meaning your gas detector won’t display accurate readings. This simple mistake can have life-altering consequences, so it’s important to always check the contents and expiration dates of your calibration gas bottles. Once a bottle is expired, you should not use it because chemical reactions can take place inside the container and alter the contents.
Bump tests, also known as functional tests, protect you on the job by ensuring that your gas monitor will alert you to harmful levels of gas. In bump testing, the sensors in your gas detector are briefly exposed to a concentration of gas that is higher than the alarm’s set points. This test verifies that the sensors on your gas detector will respond and an alarm will go off as expected. It is important to note that bump testing does not check the accuracy of the gas reading—it just checks that the sensors and alarms are working. The only way to know that your gas detector works is by bump testing it before each shift.
The easiest way to bump test your monitor is with a docking station. The docking station can automatically bump test your gas detector on a set schedule before each shift. This eliminates the time and hassle of manually bump testing your monitor. If a docking station is not available, you can also manually bump test with calibration gas. Whichever method you choose, commit to doing it every day.
As a best practice, we train instrument users to perform four basic steps in clean air each time they turn their monitor on for use:
You should never zero your gas detector unless you know that you are in a clean air environment. Zeroing a device in a contaminated atmosphere can lead to confusion in the resulting readings, and may even mask the readings of potentially dangerous gas concentrations.
If clean air is not available—as is common near fires or in smoky areas—you should use zero air (compressed air with impurities removed) to establish a baseline for your monitors. Zero air will not harm your monitors or disrupt sensor function.
If you turn on your Industrial Scientific gas monitor and the readings are within acceptable limits, there is no need to zero your monitor.
Gas detectors only serve their purpose if people use them correctly. Without visibility into how people use gas detectors, you can’t know whether they serve their intended purpose. Beyond that baseline, you also need visibility into which alarms are going off, where, and for whom so you know when to intervene and stop unsafe behaviors. Identifying these trends is critical—but it can be nearly impossible with old-school, manual tools.
To get updates on critical alarm events, usage patterns, and maintenance needs, you will need a cloud-connected docking station paired with gas detection management software. With these additional tools, you can customize your reports for what matters most to you and view them on a simple dashboard for immediate insight into critical safety patterns. By pulling alarm and usage history out of your gas detectors and into a dashboard, you can see how your people use gas detectors and whether they are making safe choices.
Regulations generally require testing the atmosphere within a confined space with a direct-reading monitor before a person enters.
Gas detectors with sampling pumps and a length of flexible tubing or a probe are ideal for drawing remote samples from confined spaces before entry. These samples are a critical step and must be recorded on a confined space entry permit.
During pre-entry sampling, use the 2×2 rule. This rule states that when using a sampling pump, you should wait two minutes plus two seconds for every foot of tubing. If you have 20 feet of tubing attached to your monitor, you would first wait two minutes, then add two seconds for each of those 20 feet, equalling 40 seconds. In this case, you would need to wait two minutes and 40 seconds for the most accurate reading.
Repeat this process at the top, middle, and bottom of the space because different gases settle at different heights, depending on their weight relative to air.
Regulatory agencies around the world have different minimum safe levels for entry, so you should always check with your local agency.
Atmospheric conditions in confined spaces can change quickly, making it very important for you to continuously monitor their levels with a direct-reading portable gas monitor.
Direct-reading monitors, such as the Ventis® Pro5, not only tell workers whether the atmosphere in a confined space is safe, but also how safe. Is the oxygen concentration just barely above 19.5 percent, or is there enough margin for the entrant to work safely? The safest procedure is for all entrants to wear a direct-reading personal gas detector that continuously monitors for potential hazards.
You can improve safety even further by using connected monitors such as the Ventis® Pro5 or Radius® BZ1, enabling monitors to wirelessly share gas readings and alarms so the attendant always knows what is happening within the confined space. If conditions trend toward danger, workers will have the notice they need to safely exit the confined space.
If a monitor indicates dangerous levels of toxic gases, combustible gases, or oxygen deficiency (or enrichment), workers must evacuate the confined space, ventilate, and retest the atmosphere before re-entering.
With low oxygen being a significant cause of death in confined spaces, it’s important that you continuously measure oxygen levels.
OSHA dictates that the minimum “safe level” of oxygen in a confined space is 19.5 percent and the maximum is 23.5 percent.
If the oxygen concentration in a confined space surpasses 23.5 percent, the space is too oxygen-rich and could ignite combustible gases. On the other hand, low oxygen levels impair judgment and coordination. Extremely low levels of oxygen cause nausea, vomiting, and loss of consciousness. When oxygen levels are too low, that typically means another gas is displacing it. In these instances, it’s important to know what gas is displacing oxygen and why.
Direct-reading monitors not only tell workers whether the atmosphere in a confined space is safe, but also how safe. Is the oxygen concentration just barely above 19.5 percent, or is there enough margin to work uninterrupted?
All of our gas detectors provide direct readings.
Safety laws require a pre-entry test just before a worker enters a confined space, and workers are only required to test again after leaving the space and preparing to reenter. Naturally, this leaves a lot of room for error if atmospheric conditions change while a worker is in the confined space, which is why confined space injuries and fatalities occur so frequently.
Periodic testing throughout the entry may be required if the confined space has a history of changing gas conditions. However, “periodic” leaves room for interpretation by workers or the company. A safer procedure is to arm all confined-space workers with direct-reading personal gas monitors and ask them to continuously monitor for gas hazards throughout the work period. If conditions begin to trend toward danger, workers will have the notice they need to safely exit the confined space.
If you rely on alarm-only monitors, this would not be possible. Because alarms are set to go off at predetermined thresholds, alarm-only instruments will not give workers a heads-up to potential dangers.
A direct-reading gas monitor, such as the Ventis® Pro5, displays gas levels so workers can see the exact reading, allowing them to make more informed decisions about whether entry is a wise choice and whether they can continue their work safely.